
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 224
Volume 1, Issue 4, December 2010

SQL Injection Attacks and Its Counter Measures
Er. Upinder Kaur [1], Er. Navdeep Kochhar[2]

Dept. of Computer Science, Baba Farid college, Deon , Bathinda, Punjab, India.

raj_chawla94@yahoo.com[1], er_navdeepkochhar@rediffmail.com[2]

Abstract: SQL injection is a technique for exploiting

web applications that use client-supplied data in SQL

queries, but without first stripping potentially harmful

characters. Despite being remarkably simple to

protect against, there is an astonishing number of

production systems connected to the Internet that are

vulnerable to this type of attack. To address this

problem, we present an extensive review of the

different types of SQL injection attacks known to

date. For each type of attack, we provide descriptions

and examples of how attacks of that type could be

performed. We also present and analyze existing

detection and prevention techniques against SQL

injection attacks. For each technique, we discuss its

strengths and weaknesses in addressing the entire

range of SQL injection attacks

Keywords: SQLIAS, preventions, attacks, SQL

injections.

1. Introduction:
SQL injection vulnerabilities have been described as

one of the most serious threats for Web applications

[3][11]. Web applications that are vulnerable to SQL

injection may allow an attacker to gain complete

access to their underlying databases. Because these

databases often contain sensitive consumer or user

information, the resulting security violations can

include identity theft, loss of confidential

information, and fraud. In some cases, attackers can

even use an SQL injection vulnerability to take

control of and corrupt the system that hosts the Web

application. Web applications that are vulnerable to

SQL Injection Attacks (SQLIAs) are widespread—a

study by Gartner Group on over 300 Internet Web

sites has shown that most of them could be

vulnerable to SQLIAs. In fact, SQLIAs have

successfully targeted high-profile victims such as

Travelocity, FTD.com, and Guess Inc. SQL injection

refers to a class of code-injection attacks in which

data provided by the user is included in an SQL

query in such a way that part of the user‘s input is

treated as SQL code. By leveraging these

vulnerabilities, an attacker can submit SQL

commands directly to the database. These attacks are

a serious threat to any Web application that receives

input from users and incorporates it into SQL queries

to an underlying database. Most web applications

used on the Internet or within enterprise systems

work this way and could therefore be vulnerable to

SQL injection. The cause of SQL injection

vulnerabilities is relatively simple and well

understood: insufficient validation of user input. To

address this problem, developers have proposed a

range of coding guidelines (e.g., [18]) that promote

defensive coding practices, such as encoding user

input and validation. A rigorous and systematic

application of these techniques is an effective

solution for preventing SQL injection vulnerabilities.

However, in practice, the application of such

techniques is human-based and, thus, prone to errors.

Furthermore, fixing legacy code-bases that might

contain SQL injection vulnerabilities can be an

extremely labor-intensive task. Although recently

there has been a great deal of attention to the problem

of SQL injection vulnerabilities, many proposed

solutions fail to address the full scope of the problem.

There are many types of SQLIAs and countless

variations on these basic types. Researchers and

practitioners are often unaware of the myriad of

different techniques that can be used to perform

SQLIAs. Therefore, most of the solutions proposed

detect or prevent only a subset of the possible

SQLIAs. To address this problem, we present a

comprehensive survey of SQL injection attacks

known to date. To compile the survey, we used

information gathered from various sources, such as

papers,Web sites, mailing lists, and experts in the

area. For each attack type considered, we give a

characterization of the attack, illustrate its effect, and

provide examples of how that type of attack could be

performed. This set of attack types is then used to

evaluate state of the art detection and prevention

techniques and compare their strengths and

weaknesses. The results of this comparison show the

effectiveness of these techniques.

1.1 Injection Mechanisms

Malicious SQL statements can be introduced into a

vulnerable application using many different input

mailto:raj_chawla94@yahoo.com[1
mailto:er_navdeepkochhar@rediffmail.com[2

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 225
Volume 1, Issue 4, December 2010

mechanisms. In this section, we explain the most

common mechanisms.

Injection through user input: In this case, attackers

inject SQL commands by providing suitably crafted

user input. A Web application can read user input in

several ways based on the environment in which the

application is deployed. In most SQLIAs that target

Web applications, user input typically comes from

form submissions that are sent to the Web application

via HTTP GET or POST requests [14]. Web

applications are generally able to access the user

input contained in these requests as they would

access any other variable in the environment.

Injection through cookies: Cookies are files that

contain state information generated byWeb

applications and stored on the client machine. When

a client returns to a Web application, cookies can be

used to restore the client‘s state information. Since

the client has control over the storage of the cookie, a

malicious client could tamper with the cookie‘s

contents. If a Web application uses the cookie‘s

contents to build SQL queries, an attacker could

easily submit an attack by embedding it in the cookie

[8].

Injection through server variables: Server

variables are a collection of variables that contain

HTTP, network headers, and environmental

variables. Web applications use these server variables

in a variety of ways, such as logging usage statistics

and identifying browsing trends. If these variables are

logged to a database without sanitization, this could

create an SQL injection vulnerability. Because

attackers can forge the values that are placed in

HTTP and network headers, they can exploit this

vulnerability by placing an SQLIA directly into the

headers. When the query to log the server variable is

issued to the database, the attack in the forged header

is then triggered.

Second-order injection: In second-order injections,

attackers seed malicious inputs into a system or

database to indirectly trigger an SQLIA when that

input is used at a later time. The objective of this kind

of attack differs significantly from a regular (i.e., first

order) injection attack. Second-order injections are

not trying to cause the attack to occur when the

malicious input initially reaches the database.

Instead, attackers rely on knowledge of where the

input will be subsequently used and craft their attack

so that it occurs during that usage. To clarify, we

present a classic example of a second order injection

attack (taken from [1]). In the example, a user

registers on a website using a seeded user name, such

as ―admin‘ -- ‖. The application properly escapes the

single quote in the input before storing it in the

database, preventing its potentially malicious effect.

At this point, the user modifies his or her password,

an operation that typically involves (1) checking that

the user knows the current password and (2)

changing the password if the check is successful. To

do this, the Web application might construct an SQL

command as follows:

queryString="UPDATE users SET password=‘" +

newPassword +

"‘ WHERE userName=‘" + userName + "‘ AND

password=‘" +

oldPassword + "‘" newPassword and oldPassword

are the new and old passwords,

respectively, and userName is the name of the user

currently

logged-in (i.e., ‗‗admin‘--‘‘).

Therefore, the query string that is sent to the database

is (assume that newPassword and oldPas-sword are

―newpwd‖ and―oldpwd‖):

UPDATE users SET password=‘newpwd‘ WHERE

userName= ‘admin‘--‘ AND password=‘oldpwd‘

Because ―--‖ is the SQL comment operator,

everything after it is ignored by the database.

Therefore, the result of this query is that the database

changes the password of the administrator (―admin‖)

to an attacker-specified value. Second-order

injections can be especially difficult to detect and

prevent because the point of injection is different

from the point where the attack actually manifests

itself. A developer may properly escape, type-check,

and filter input that comes from the user and assume

it is safe. Later on, when that data is used in a

different context, or to build a different type of query,

the previously sanitized input may result in an

injection attack.

2. Different types of SQLIA
In this section, we present and discuss the different

kinds of SQLIAs known to date. For each attack type,

we provide a descriptive name, a description of the

attack, an attack example, and a set of references to

publications and Web sites that discuss the attack

technique and its variations in greater detail. The

different types of attacks are generally not performed

in isolation; many of them are used together or

sequentially, depending on the specific goals of the

attacker. Note also that there are countless variations

of each attack type. For space reasons, we do not

present all of the possible attack variations but

instead present a single representative example.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 226
Volume 1, Issue 4, December 2010

Tautologies Attack: Bypassing authentication,

identifying injectable parameters, extracting data.

Description: The general goal of a tautology-based

attack is to inject code in one or more conditional

statements so that they always evaluate to true. The

consequences of this attack depend on how the

results of the query are used within the application.

The most common usages are to bypass

authentication pages and extract data. In this type of

injection, an attacker exploits an injectable field that

is used in a query‘s WHERE conditional.

Transforming the conditional into a tautology causes

all of the rows in the database table targeted by the

query to be returned. Example: In this example

attack, an attacker submits ― ‘ or 1=1 - - ‖ for the

login input field (the input submitted for the other

fields is irrelevant). The resulting query is:

SELECT accounts FROM users WHERE login=‘‘ or

1=1 -- AND pass=‘‘ AND pin=

The code injected in the conditional (OR 1=1)

transforms the entire WHERE clause into a

tautology. The database uses the conditional as the

basis for evaluating each row and deciding which

ones to return to the application. Because the

conditional is a tautology, the query evaluates to true

for each row in the table and returns all of them. In

our example, the returned set evaluates to a non null

value, which causes the application to conclude that

the user authentication was successful. Therefore, the

application would invoke method displayAccounts()

and show all of the accounts in the set returned by the

database. [1][28][21][18]

Illegal/Logically Incorrect Queries Attack:

Identifying injectable parameters, performing

database finger-printing, extracting data.

Description: This attack lets an attacker gather

important information about the type and structure of

the back-end database of a Web application. The

attack is considered a preliminary, information

gathering step for other attacks. The vulnerability

leveraged by this attack is that the default error page

returned by application servers is often overly

descriptive. In fact, the simple fact that an error

messages is generated can often reveal

vulnerable/injectable parameters to an attacker.

Additional error information, originally intended to

help programmers debug their applications, further

helps attackers gain information about the schema of

the back-end database.

Example: This example attack‘s goal is to cause a

type conversion error that can reveal relevant data.

To do this, the attacker injects the following text into

input field pin: ―convert(int,(select top 1 name from

sysobjects where xtype=‘u‘))‖. The resulting query

is:

SELECT accounts FROM users WHERE login=‘‘

AND pass=‘‘ AND pin= convert (int,(select top 1

name from

sysobjects where xtype=‘u‘))

In the attack string, the injected select query attempts

to extract the first user table (xtype=‘u‘) from the

database‘s metadata table (assume the application is

using Microsoft SQL Server, for which the metadata

table is called sysobjects). The query then tries to

convert this table name into an integer. Because this

is not a legal type conversion, the database throws an

error. For Microsoft SQL Server, the error would be:

‖Microsoft OLE DB Provider for SQL Server

(0x80040E07) Error converting nvarchar value

‘CreditCards‘ to a column of data type int.‖ There are

two useful pieces of information in this message that

aid an attacker. First, the attacker can see that the

database is an SQL Server database, as the

errormessage explicitly states this fact. Second, the

error message reveals the value of the string that

caused the type conversion to occur. In this case, this

value is also the name of the first user-defined table

in the database: ―CreditCards.‖ A similar strategy can

be used to systematically extract the name and type

of each column in the database. Using this

information about the schema of the database, an

attacker can then create further attacks that target

specific pieces of information. [1][22][28]

Union Query Attack: Bypassing Authentication,

extracting data.

Description: In union-query attacks, an attacker

exploits a vulnerable parameter to change the data set

returned for a given query. Attackers do this by

injecting a statement of the form: UNION SELECT

<rest of injected query>. Because the attackers

completely control the second/injected query, they

can use that query to retrieve information from a

specified table. The result of this attack is that the

database returns a dataset that is the union of the

results of the original first query and the results of the

injected second query.

Example: Referring to the running example, an

attacker could inject the text ―‘ UNION SELECT

cardNo from CreditCards where acctNo=10032 - -‖

into the login field, which produces the following

query:

SELECT accounts FROM users WHERE login=‘‘

UNION SELECT cardNo from CreditCards where

acctNo=10032 -- AND pass=‘‘ AND pin=

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 227
Volume 1, Issue 4, December 2010

Assuming that there is no login equal to ―‖, the

original first query returns the null set, whereas the

second query returns data from the ―CreditCards‖

table. In this case, the database would return column

―cardNo‖ for account ―10032.‖ The database takes

the results of these two queries, unions them, and

returns them to the application. In many applications,

the effect of this operation is that the value for

―cardNo‖ is displayed along with the account

information. [1][28][21]

PiggyBacked Queries Attack: Extracting data,

adding or modifying data, performing denial of

service, executing remote commands.

Description: In this attack type, an attacker tries to

inject additional queries into the original query. We

distinguish this type from others because, in this case,

attackers are not trying to modify the original query;

instead, they are trying to include new and distinct

queries that ―piggy-back‖ on the original query. As a

result, the database receives multiple SQL queries.

Vulnerability to this type of attack is often dependent

on having a database configuration that allows

multiple statements to be contained in a single string.

Example: If the attacker inputs ―‘; drop table users - -

‖ into the pass field, the application generates the

query:

SELECT accounts FROM users WHERE login=‘doe‘

AND pass=‘‘; drop table users -- ‘ AND pin=123

After completing the first query, the database would

recognize the 1 stored procedures are routines stored

in the database and run by the database engine. These

procedures can be either user-defined procedures or

procedures provided by the database by default.

query delimiter (―;‖) and execute the injected second

query. The result of executing the second query

would be to drop table users, which would likely

destroy valuable information. Other types of queries

could insert new users into the database or execute

stored procedures. Note that many databases do not

require a special character to separate distinct

queries, so simply scanning for a query separator is

not an effective way to prevent this type of attack.

[1][28][18]

Stored Procedures Attack: Performing privilege

escalation, performing denial of service, executing

remote commands.

Description: SQLIAs of this type try to execute

stored procedures present in the database. Today,

most database vendors ship databases with a standard

set of stored procedures that extend the functionality

of the database and allow for interaction with the

operating system. Therefore, once an attacker

determines which backend database is in use,

SQLIAs can be crafted to execute stored procedures

provided by that specific database, including

procedures that interact with the operating system. It

is a common misconception that using stored

procedures to write Web applications renders them

invulnerable to SQLIAs. Developers are often

surprised to find that their stored procedures can be

just as vulnerable to attacks as their normal

applications [18][24]. Additionally, because stored

procedures are often written in special scripting

languages, they can contain other types of

vulnerabilities, such as buffer overflows, that allow

attackers to run arbitrary code on the server or

escalate their privileges [9].

Stored procedure for checking credentials.

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

AS EXEC("SELECT accounts FROM users WHERE

login=‘" +@userName+ "‘ and pass=‘"

+@password+

"‘ and pin=" +@pin);

GO

Example: This example demonstrates how a

parameterized stored procedure can be exploited via

an SQLIA. In the example, we assume that the query

string constructed at lines of our example has been

replaced by a call to the stored procedure. The stored

procedure returns a true/false value to indicate

whether the user‘s credentials authenticated correctly.

To launch an SQLIA, the attacker simply injects ― ‘ ;

SHUTDOWN; - -‖ into either the userName or

password fields. This injection causes the stored

procedure to generate the following query:

SELECT accounts FROM users WHERE login=‘doe‘

AND pass=‘ ‘; SHUTDOWN; -- AND pin=

At this point, this attack works like a piggy-back

attack. The first query is executed normally, and then

the second, malicious query is executed, which

results in a database shut down. This example shows

that stored procedures can be vulnerable to the same

range of attacks as traditional application code. [1][

4][9][10][24][28][21][18]

Inference Attack: dentifying injectable parameters,

extracting data, determining database schema.

Description: In this attack, the query is modified to

recast it in the form of an action that is executed

based on the answer to a true/- false question about

data values in the database. In this type of injection,

attackers are generally trying to attack a site that has

been secured enough so that, when an injection has

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 228
Volume 1, Issue 4, December 2010

succeeded, there is no usable feedback via database

error messages. In this situation, the attacker injects

commands into the site and then observes how the

function/response of the website changes. By

carefully noting when the site behaves the same and

when its behavior changes, the attacker can deduce

not only whether certain parameters are vulnerable,

but also additional information about the values in

the database. There are two well known attack

techniques that are based on inference. They allow an

attacker to extract data from a database and detect

vulnerable parameters. Researchers have reported

that with these techniques they have been able to

achieve a data extraction rate of 1B/s [2].

Blind Injection: In this technique, the information

must be inferred from the behavior of the page by

asking the server true/- false questions. If the injected

statement evaluates to true, the site continues to

function normally. If the statement evaluates to false,

although there is no descriptive error message, the

page differs significantly from the normally-

functioning page.

Timing Attacks: A timing attack allows an attacker

to gain information from a database by observing

timing delays in the response of the database. This

attack is very similar to blind injection, but uses a

different method of inference. To perform a timing

attack, attackers structure their injected query in the

form of an if/then statement, whose branch predicate

corresponds to an unknown about the contents of the

database. Along one of the branches, the attacker

uses a SQL construct that takes a known amount of

time to execute, (e.g. the WAITFOR keyword, which

causes the database to delay its response by a

specified time). By measuring the increase or

decrease in response time of the database, the

attacker can infer which branch was taken in his

injection and therefore the answer to the injected

question.

Example: Using the code from our running example,

we illustrate two ways in which Inference based

attacks can be used. The first of these is identifying

injectable parameters using blind injection. Consider

two possible injections into the login field. The first

being ―legalUser‘ and 1=0 - -‖ and the second,

―legalUser‘ and 1=1 - -‖. These injections result in

the following two queries:

SELECT accounts FROM users WHERE

login=‘legalUser‘ and 1=0 -- ‘ AND pass=‘‘ AND

pin=0

SELECT accounts FROM users WHERE

login=‘legalUser‘ and 1=1 -- ‘ AND pass=‘‘ AND

pin=0

Now, let us consider two scenarios. In the first

scenario, we have a secure application, and the input

for login is validated correctly. In this case, both

injections would return login error messages, and the

attacker would know that the login parameter is not

vulnerable. In the second scenario, we have an

insecure application and the login parameter is

vulnerable to injection. The attacker submits the first

injection and, because it always evaluates to false, the

application returns a login error message. At this

point however, the attacker does not know if this is

because the application validated the input correctly

and blocked the attack attempt or because the attack

itself caused the login error. The attacker then

submits the second query, which always evaluates to

true. If in this case there is no login error message,

then the attacker knows that the attack went through

and that the login parameter is vulnerable to

injection.

The second way inference based attacks can be used

is to perform data extraction. Here we illustrate how

to use a Timing based inference attack to extract a

table name from the database. In this attack, the

following is injected into the login parameter:

‗‗legalUser‘ and ASCII(SUBSTRING((select top 1

name from sysobjects),1,1)) > X WAITFOR 5 --‘‘.

This produces the following query:

SELECT accounts FROM users WHERE

login=‘legalUser‘ and

ASCII(SUBSTRING((select top 1 name from

sysobjects),1,1))

> X WAITFOR 5 -- ‘ AND pass=‘‘ AND pin=0

In this attack the SUBSTRING function is used to

extract the first character of the first table‘s name.

Using a binary search strategy, the attacker can then

ask a series of questions about this character. In this

case, the attacker is asking if the ASCII value of the

character is greater-than or less-than-or-equal-to the

value of X. If the value is greater, the attacker knows

this by observing an additional 5 second delay in the

response of the database. The attacker can then use a

binary search by varying the value of X to identify

the value of the first character. [2]

Alternate Encodings Attack : Evading detection.

Description: In this attack, the injected text is

modified so as to avoid detection by defensive coding

practices and also many automated prevention

techniques. This attack type is used in conjunction

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 229
Volume 1, Issue 4, December 2010

with other attacks. In other words, alternate

encodings do not provide any unique way to attack an

application; they are simply an enabling technique

that allows attackers to evade detection and

prevention techniques and exploit vulnerabilities that

might not otherwise be exploitable. These evasion

techniques are often necessary because a common

defensive coding practice is to scan for certain known

―bad characters,‖ such as single quotes and comment

operators. To evade this defense, attackers have

employed alternate methods of encoding their attack

strings (e.g., using hexadecimal, ASCII, and Unicode

character encoding). Common scanning and detection

techniques do not try to evaluate all specially

encoded strings, thus allowing these attacks to go

undetected. The application may scan for certain

types of escape characters that represent alternate

encodings in its language domain. Another layer

(e.g., the database) may use different escape

characters or even completely different ways of

encoding. For example, a database could use the

expression char(120) to represent an alternately-

encoded character ―x‖, but char(120) has no special

meaning in the application language‘s context. An

effective code-based defense against alternate

encodings is difficult to implement in practice

because it requires developers to consider of all of the

possible encodings that could affect a given query

string as it passes through the different application

layers. Therefore, attackers have been very successful

in using alternate encodings to conceal their attack

strings.

Example: Because every type of attack could be

represented using an alternate encoding, here we

simply provide an example (see [18]) of how esoteric

an alternatively-encoded attack could appear. In this

attack, the following text is injected into the login

field: ―legalUser‘; exec(0x73687574646f776e) - - ‖.

The resulting query generated by the application is:

SELECT accounts FROM users WHERE

login=‘legalUser‘;nexec(char(0x73687574646f776e))

-- AND pass=‘‘ AND pin=

This example makes use of the char() function and of

ASCII hexadecimal encoding. The char() function

takes as a parameter an integer or hexadecimal

encoding of a character and returns an instance of

that character. The stream of numbers in the second

part of the injection is the ASCII hexadecimal

encoding of the string ―SHUTDOWN.‖ Therefore,

when the query is interpreted by the database, it

would result in the execution, by the database, of the

SHUTDOWN command. [1][18]

3. PREVENTION OF SQLIAS

Researchers have proposed a wide range of

techniques to address the problem of SQL injection.

These techniques range from development best

practices to fully automated frameworks for detecting

and preventing SQLIAs. In this section, we review

these proposed techniques and summarize the

advantages and disadvantages associated with each

technique.

3.1 Defensive Coding Practices

The root cause of SQL injection vulnerabilities is

insufficient input validation. Therefore, the

straightforward solution for eliminating these

vulnerabilities is to apply suitable defensive coding

practices. Here, we summarize some of the best

practices proposed in the literature for preventing

SQL injection vulnerabilities.

Input type checking: SQLIAs can be performed by

injecting commands into either a string or numeric

parameter. Even a simple check of such inputs can

prevent many attacks. For example, in the case of

numeric inputs, the developer can simply reject any

input that contains characters other than digits. Many

developers omit this kind of check by accident

because user input is almost always represented in

the form of a string, regardless of its content or

intended use.

Encoding of inputs: Injection into a string parameter

is often accomplished through the use of meta-

characters that trick the SQL parser into interpreting

user input as SQL tokens. While it is possible to

prohibit any usage of these meta-characters, doing so

would restrict a non-malicious user‘s ability to

specify legal inputs that contain such characters. A

better solution is to use functions that encode a string

in such a way that all meta-characters are specially

encoded and interpreted by the database as normal

characters.

Positive pattern matching: Developers should

establish input validation routines that identify good

input as opposed to bad input. This approach is

generally called positive validation, as opposed to

negative validation, which searches input for

forbidden patterns or SQL tokens. Because

developers might not be able to envision every type

of attack that could be launched against their

application, but should be able to specify all the

forms of legal input, positive validation is a safer way

to check inputs.

Identification of all input sources: Developers must

check all input to their application. There are many

possible sources of input to an application. If used to

construct a query, these input sources can be a way

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 230
Volume 1, Issue 4, December 2010

for an attacker to introduce an SQLIA. Simply put,

all input sources must be checked. Although

defensive coding practices remain the best way to

prevent SQL injection vulnerabilities, their

application is problematic in practice. Defensive

coding is prone to human error and is not as

rigorously and completely applied as automated

techniques. While most developers do make an effort

to code safely, it is extremely difficult to apply

defensive coding practices rigorously and correctly to

all sources of input. In fact, many of the SQL

injection vulnerabilities discovered in real

applications are due to human errors: developers

forgot to add checks or did not perform adequate

input validation [20][23][33]. In other words, in

these applications, developers were making an effort

to detect and prevent SQLIAs, but failed to do so

adequately and in every needed location. These

examples provide further evidence of the problems

associated with depending on developer‘s use of

defensive coding. Moreover, approaches based on

defensive coding are weakened by the widespread

promotion and acceptance of so-called

―pseudoremedies‖ [18]. We discuss two of the most

commonly-proposed pseudo-remedies. The first of

such remedies consists of checking user input for

SQL keywords, such as ―FROM,‖ ―WHERE,‖ and

―SELECT,‖ and SQL operators, such as the single

quote or comment operator. The rationale behind this

suggestion is that the presence of such keywords and

operators may indicate an attempted SQLIA. This

approach clearly results in a high rate of false

positives because, in many applications, SQL

keywords can be part of a normal text entry, and SQL

operators can be used to express formulas or even

names (e.g., O‘Brian). The second commonly

suggested pseudo-remedy is to use stored procedures

or prepared statements to prevent SQLIAs.

Unfortunately, stored procedures and prepared

statements can also be vulnerable to SQLIAs unless

developers rigorously apply defensive coding

guidelines. Interested readers may refer to [1][25][

28][29] for examples of how these pseudo-remedies

can be subverted.

3.2 Detection and Prevention Techniques

Researchers have proposed a range of techniques to

assist developers and compensate for the

shortcomings in the application of defensive coding.

Black Box Testing: Huang and colleagues [19]

proposeWAVES, a black-box technique for testing

Web applications for SQL injection vulnerabilities.

The technique uses a Web crawler to identify all

points in a Web application that can be used to inject

SQLIAs. It then builds attacks that target such points

based on a specified list of patterns and attack

techniques. WAVES then monitors the application‘s

response to the attacks and uses machine learning

techniques to improve its attack methodology. This

technique improves over most penetration-testing

techniques by using machine learning approaches to

guide its testing. However, like all black-box and

penetration testing techniques, it cannot provide

guarantees of completeness.

Static Code Checkers: JDBC-Checker is a technique

for statically checking the type correctness of

dynamically-generated SQL queries [12][13]. This

technique was not developed with the intent of

detecting and preventing general SQLIAs, but can

nevertheless be used to prevent attacks that take

advantage of type mismatches in a dynamically-

generated query string. JDBC-Checker is able to

detect one of the root causes of SQLIA

vulnerabilities in code— improper type checking of

input. However, this technique would not catch more

general forms of SQLIAs because most of these

attacks consist of syntactically and type correct

queries. Wassermann and Su propose an approach

that uses static analysis combined with automated

reasoning to verify that the SQL queries generated in

the application layer cannot contain a tautology. The

primary drawback of this technique is that its scope is

limited to detecting and preventing tautologies and

cannot detect other types of attacks.

Combined Static and Dynamic Analysis:
AMNESIA is a model-based technique that combines

static analysis and runtime monitoring [17][16]. In its

static phase, AMNESIA uses static analysis to build

models of the different types of queries an

application can legally generate at each point of

access to the database. In its dynamic phase,

AMNESIA intercepts all queries before they are sent

to the database and checks each query against the

statically built models. Queries that violate the model

are identified as SQLIAs and prevented from

executing on the database. In their evaluation, the

authors have shown that this technique performs well

against SQLIAs. The primary limitation of this

technique is that its success is dependent on the

accuracy of its static analysis for building query

models. Certain types of code obfuscation or query

development techniques could make this step less

precise and result in both false positives and false

negatives. Similarly, two recent related approaches,

SQLGuard [6] and SQLCheck also check queries at

runtime to see if they conform to a model of expected

queries. In these approaches, the model is expressed

as a grammar that only accepts legal queries. In

SQLGuard,the model is deduced at runtime by

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 231
Volume 1, Issue 4, December 2010

examining the structure of the query before and after

the addition of user-input. In SQLCheck, the model is

specified independently by the developer. Both

approaches use a secret key to delimit user input

during parsing by the runtime checker, so security of

the approach is dependent on attackers not being able

to discover the key. Additionally, the use of these two

approaches requires the developer to either rewrite

code to use a special intermediate library or manually

insert special markers into the code where user input

is added to a dynamically generated query.

Taint Based Approaches: WebSSARI detects input-

validation related errors using information flow

analysis [20]. In this approach, static analysis is used

to check taint flows against preconditions for

sensitive functions. The analysis detects the points in

which preconditions have not been met and can

suggest filters and sanitization functions that can be

automatically added to the application to satisfy these

preconditions. The WebSSARI system works by

considering as sanitized input that has passed through

a predefined set of filters. In their evaluation, the

authors were able to detect security vulnerabilities in

a range of existing applications. The primary

drawbacks of this technique are that it assumes that

adequate preconditions for sensitive functions can be

accurately expressed using their typing system and

that having input passing through certain types of

filters is sufficient to consider it not tainted. Formany

types of functions and applications, this assumption

is too strong. Livshits and Lam [23] use static

analysis techniques to detect vulnerabilities in

software. The basic approach is to use information

flow techniques to detect when tainted input has been

used to construct an SQL query. These queries are

then flagged as SQLIA vulnerabilities. The authors

demonstrate the viability of their technique by using

this approach to find security vulnerabilities in a

benchmark suite. The primary limitation of this

approach is that it can detect only known patterns of

SQLIAs and, because it uses a conservative analysis

and has limited support for untainting operations, can

generate a relatively high amount of false positives.

Several dynamic taint analysis approaches have been

proposed. Two similar approaches by Nguyen-Tuong

and colleagues and Pietraszek and Berghe modify a

PHP interpreter to track precise per-character taint

information. The techniques use a context sensitive

analysis to detect and reject queries if untrusted input

has been used to create certain types of SQL tokens.

A common drawback of these two approaches is that

they require modifications to the runtime

environment, which affects portability. A technique

by Haldar and colleagues [15] and SecuriFly [26]

implement a similar approach for Java. However,

these techniques do not use the context sensitive

analysis employed by the other two approaches and

track taint information on a per-string basis (as

opposed to percharacter). SecuriFly also attempts to

sanitize query strings that have been generated using

tainted input. However, this sanitization approach

does not help if injection is performed into numeric

fields. In general, dynamic taint-based techniques

have shown a lot of promise in their ability to detect

and prevent SQLIAs. The primary drawback of these

approaches is that identifying all sources of tainted

user input in highly-modular Web applications and

accurately propagating taint information is often a

difficult task.

NewQueryDevelopmentParadigms: Two recent

approaches, SQL DOM [27] and Safe Query Objects

[7], use encapsulation of database queries to provide

a safe and reliable way to access databases. These

techniques offer an effective way to avoid the SQLIA

problem by changing the query-building process

from an unregulated one that uses string

concatenation to a systematic one that uses a type-

checked API.Within their API, they are able to

systematically apply coding best practices such as

input filtering and rigorous type checking of user

input. By changing the development paradigm in

which SQL queries are created, these techniques

eliminate the coding practices that make most

SQLIAs possible. Although effective, these

techniques have the drawback that they require

developers to learn and use a new programming

paradigm or query-development process.

Furthermore, because they focus on using a new

development process, they do not provide any type of

protection or improved security for existing legacy

systems.

Intrusion Detection Systems: Valeur and colleagues

[29] propose the use of an Intrusion Detection

System(IDS) to detect SQLIAs. Their IDS system is

based on a machine learning technique that is trained

using a set of typical application queries. The

technique builds models of the typical queries and

then monitors the application at runtime to identify

queries that do not match the model. In their

evaluation, Valeur and colleagues have shown that

their system is able to detect attacks with a high rate

of success. However, the fundamental limitation of

learning based techniques is that they can provide no

guarantees about their detection abilities because

their success is dependent on the quality of the

training set used. A poor training set would cause the

learning technique to generate a large number of false

positives and negatives.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 232
Volume 1, Issue 4, December 2010

Proxy Filters: Security Gateway [28] is a proxy

filtering system that enforces input validation rules

on the data flowing to a Web application. Using their

Security Policy Descriptor Language (SPDL),

developers provide constraints and specify

transformations to be applied to application

parameters as they flow from the Web page to the

application server. Because SPDL is highly

expressive, it allows developers considerable

freedom in expressing their policies. However, this

approach is human-based and, like defensive

programming, requires developers to know not only

which data needs to be filtered, but also what patterns

and filters to apply to

the data.

Instruction Set Randomization: SQLrand [5] is an

approach based on instruction-set randomization.

SQLrand provides a framework that allows

developers to create queries using randomized

instructions instead of normal SQL keywords. A

proxy filter intercepts queries to the database and de-

randomizes the keywords. SQL code injected by an

attacker would not have been constructed using the

randomized instruction set. Therefore, injected

commands would result in a syntactically incorrect

query. While this technique can be very effective, it

has several practical drawbacks. First, since it uses a

secret key to modify instructions, security of the

approach is dependent on attackers not being able to

discover the key. Second, the approach imposes a

significant infrastructure overhead because it require

the integration of a proxy for the database in the

system.

4. TECHNIQUES EVALUATION
In this section, we evaluate the techniques presented

in Section 3 using several different criteria. We first

consider which attack types each technique is able to

address. For the subset of techniques that are based

on code improvement, we look at which defensive

coding practices the technique helps enforce. We

then identify which injection mechanism each

technique is able to handle. Finally, we evaluate the

deployment requirements of each technique.

4.1 Evaluation with Respect to Attack Types

We evaluated each proposed technique to assess

whether it was capable of addressing the different

attack types presented in Section 2. For most of the

considered techniques, we did not have access to an

implementation because either the technique was not

implemented or its implementation was not available.

Therefore, we evaluated the techniques analytically,

as opposed to evaluating them against actual attacks.

For developer-based techniques, that is, those that

required developer intervention, we assumed that the

developers were able to correctly apply all required

defensive coding practices. In other words, our

assessment of these techniques is optimistic

compared to what their performance may be in

practice. In our tables, we denote developer-based

techniques with the symbol ―*‖. For the purposes of

the comparison, we divide the techniques into two

groups: prevention-focused and detection-focused

techniques. Prevention-focused techniques are

techniques that statically identify vulnerabilities in

the code, propose a different development paradigm

for applications that generate SQL queries, or add

checks to the application to enforce defensive coding

best practices. Detection-focused techniques are

techniques that detect attacks mostly at runtime.

Tables 1 and 2 summarize the results of our

evaluation. We use four different types of markings

to indicate how a technique performed with respect to

a given attack type. We use the symbol ―•‖ to denote

that a technique can successfully stop all attacks of

that type. Conversely, we use the symbol ―×‖ to

denote that a technique is not able to stop attacks of

that type. We used two different symbols to classify

techniques that are only partially effective. The

symbol ―◦‖ denotes a technique that can address the

attack type considered, but cannot provide any

guarantees of completeness. An example of one such

technique would be a black-box testing technique

such as WAVES [19] or the IDS based approach

from Valeur and colleagues [29]. The symbol ―−,‖

denotes techniques that address the attack type

considered only partially because of intrinsic

limitations of the underlying approach. For example,

JDBCChecker [12][13] detects type-related errors

that enable SQL injection vulnerabilities. However,

because type-related errors are only one of the many

possible causes of SQL injection vulnerabilities, this

approach is classified as only partially handling each

attack type. Half of the prevention-focused

techniques effectively handle all of the attack types

considered. Some techniques are only partially

effective: JDBC-Checker by definition addresses

only a subset of SQLIAs; Security Gateway, because

it cannot handle all of the injection sources cannot

completely address all of the attack profiles;

SecuriFly, because its prevention method is to escape

all SQL meta-characters, which still would allow

injection into numeric fields; and WAVES, which

because it is a testing based technique, cannot

provide guarantees as to its completeness. We believe

that, overall, the prevention-focused techniques

performed well because they incorporate the

defensive coding practices in their prevention

mechanisms. See Section 4.4 for further discussion

on this topic. Most of the detection-focused

techniques perform fairly uniformly against the

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 233
Volume 1, Issue 4, December 2010

various attack types. The three exceptions are the

IDSbased approach by Valeur and colleagues [29],

whose effectiveness depends on the quality of the

training set used, Java Dynamic Tainting [15], whose

performance is negatively affected by the fact that its

untainting operations allow input to be used without

regard to the quality of the check, and Tautology-

checker, which by definition can only address

tautology-based attacks. Two attack types, stored

procedures and alternate encodings, caused problems

for most techniques. With stored procedures, the code

that generates the query is stored and executed on the

database. Most of the techniques considered focused

only on queries generated within the application.

Expanding the techniques to also encompass the

queries generated and executed on the database is not

straightforward and would, in general, require

substantial effort. For this reason, attacks based on

stored procedures are problematic for many

techniques. Attacks based on alternate encoding are

also difficult to handle. Only three techniques,

AMNESIA, SQLCheck, and SQLGuard explicitly

address these types of attacks. The reason why these

techniques are successful against such attacks is that

they use the database lexer or parser to interpret a

query string in the same way that the database would.

Other techniques that score well in this category are

either developer-based techniques (i.e., Java Static

Tainting and WebSSARI) or techniques that address

the problem by using a standard API (i.e., SQL DOM

and Safe Query Objects). It is important to note that

we did not take precision into account in our

evaluation. Many of the techniques that we consider

are based on some conservative analysis or

assumptions that may result in false positives.

However, because we do not have an accurate way to

classify the accuracy of such techniques, short of

implementing all of them and assessing their

performance on a large set of legitimate inputs, we

have not considered this characteristic in our

assessment.

4.2 Evaluation with Respect to Injection

Mechanisms

We assessed each of the techniques with respect to

their handling of the various injection mechanisms

that we defined in Section 1.1. Although most of the

techniques do not specifically address all of those

injection mechanisms, all but two of them could be

easily extended to handle all such mechanisms. The

two exceptions are Security Gateway and WAVES.

Security Gateway can examine only URL parameters

and cookie fields. Because it resides on the network

between the application and the attacker, it cannot

examine server variables and second-order injection

sources, which do not pass through the gateway.

WAVES can only address injection through user

input because it only generates attacks that can be

submitted to the application via the Web page forms.

4.3 Evaluation with Respect to Deployment

Requirements

Each of the techniques have different deployment

requirements. To determine the effort and

infrastructure required to use the technique, we

examined the author‘s description of the technique

and its current implementation. We evaluated each

technique with respect to the following criteria: (1)

Does the technique require developers to modify their

code base? (2) What is the degree of automation of

the detection aspect of the approach? (3) What is the

degree of automation of the prevention aspect of the

approach? (4) What infrastructure (not including the

tool itself) is needed to successfully use the

technique? The results of this classification are

summarized in Table 3.

4.4 Evaluation of PreventionFocused Techniques

with Respect to Defensive Coding Practices

Our initial evaluation of the techniques against the

various attack types indicates that the prevention-

focused techniques perform very well against most of

these attacks. We hypothesize that this result is due to

the fact that many of the prevention techniques are

actually applying defensive coding best practices to

the code base. Therefore, we examine each of the

prevention-focused techniques and classify them with

respect to the defensive coding practice that they

enforce. Not surprisingly, we find that these

techniques enforce many of these practices. Table 4

summarizes, for each technique, which of the

defensive coding practices it enforces.

5. Future work and Conclusion:
In this paper, we have presented a survey and

comparison of current techniques for detecting and

preventing SQLIAs. To perform this evaluation, we

first identified the various types of SQLIAs known to

date. We then evaluated the considered techniques in

terms of their ability to detect and/or prevent such

attacks. We also studied the different mechanisms

through which SQLIAs can be introduced into an

application and identified which techniques were able

to handle which mechanisms. Lastly, we summarized

the deployment requirements of each technique and

evaluated to what extent its detection and prevention

mechanisms could be fully automated. Our

evaluation found several general trends in the results.

Many of the techniques have problems handling

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 234
Volume 1, Issue 4, December 2010

attacks that take advantage of poorly-coded stored

procedures and cannot handle attacks that disguise

themselves using alternate encodings. We also found

a general distinction in prevention abilities based on

the difference between prevention-focused and

general detection and prevention techniques. Section

4.4 suggests that this difference could be explained

by the fact that prevention-focused techniques try to

incorporate defensive coding best practices into their

attack prevention mechanisms. Future evaluation

work should focus on evaluating the techniques‘

precision and effectiveness in practice. Empirical

evaluations such as those presented in related work

(e.g., [17]) would allow for comparing the

performance of the different techniques when they

are subjected to real-world attacks and legitimate

inputs.

Table 1. Comparison of detection-focused techniques with respect to attack types.

Table 2: Comparison of prevention-focused techniques with respect to attack types.

Table 3: Comparison of techniques with respect to deployment requirements.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 235
Volume 1, Issue 4, December 2010

Table 4: Evaluation of Code Improvement Techniques with Respect to Common Development Errors.

6. References
[1] C. Anley. Advanced SQL Injection In SQL Server

Applications. White paper, Next Generation Security

Software Ltd., 2002.

[2] C. Anley. (more) Advanced SQL Injection. White

paper, Next Generation Security Software Ltd., 2002.

[3] D. Aucsmith. Creating and Maintaining Software that

Resists Malicious Attack.

http://www.gtisc.gatech.edu/bio aucsmith.html, September

2004. Distinguished Lecture Series.

[4] F. Bouma. Stored Procedures are Bad, O‘kay?

Technical report, Asp.Net Weblogs, November 2003.

http://weblogs.asp.

net/fbouma/archive/2003/11/18/38178.aspx.

[5] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing

SQL Injection Attacks. In Proceedings of the 2nd Applied

Cryptography and Network Security (ACNS) Conference,

pages 292–302, June 2004.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti.

Using Parse Tree Validation to Prevent SQL Injection

Attacks. In International Workshop on Software

Engineering and Middleware (SEM), 2005.

[7] W. R. Cook and S. Rai. Safe Query Objects: Statically

Typed Objects as Remotely Executable Queries. In

Proceedings of the 27th International Conference on

Software Engineering (ICSE 2005), 2005.

[8] M. Dornseif. Common Failures in Internet Applications,

May 2005. http://md.hudora.de/presentations/ 2005-

common-failures/ dornseif-common-failures-2005-05-

25.pdf.

[9] E. M. Fayo. Advanced SQL Injection in Oracle

Databases. Technical report, Argeniss Information

Security, Black Hat Briefings, Black Hat USA, 2005.

[10] P. Finnigan. SQL Injection and Oracle - Parts 1 & 2.

Technical Report, Security Focus, November 2002.

http://securityfocus.com/infocus/1644,

http://securityfocus.com/infocus/1646.

[11] T. O. Foundation. Top Ten Most Critical Web

Application Vulnerabilities, 2005. http:

//www.owasp.org/documentation/topten.html.

[12] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A

Static Analysis Tool for SQL/JDBC Applications. In

Proceedings of the 26th International Conference on

Software Engineering (ICSE 04) – Formal Demos, pages

697–698, 2004.

[13] C. Gould, Z. Su, and P. Devanbu. Static Checking of

Dynamically Generated Queries in Database Applications.

In Proceedings of the 26th International Conference on

Software Engineering (ICSE 04), pages 645–654, 2004.

[14] N. W. Group. RFC 2616 – Hypertext Transfer

Protocol – HTTP/1.1. Request for comments, The Internet

Society, 1999.

[15] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint

Propagation for Java. In Proceedings 21st Annual

Computer Security Applications Conference, Dec. 2005.

[16] W. G. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In

Proceedings of the IEEE and ACM International

http://www.gtisc.gatech.edu/bio%20aucsmith.html
http://weblogs.asp/
http://md.hudora.de/presentations/
http://securityfocus.com/infocus/1644
http://securityfocus.com/infocus/1646

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 236
Volume 1, Issue 4, December 2010

Conference on Automated Software Engineering (ASE

2005), Long Beach, CA, USA, Nov 2005.

[17] W. G. Halfond and A. Orso. Combining Static

Analysis and Runtime Monitoring to Counter SQL-

Injection Attacks. In Proceedings of the Third International

ICSE Workshop on Dynamic Analysis (WODA 2005),

pages 22–28, St. Louis, MO, USA, May 2005.

[18] M. Howard and D. LeBlanc. Writing Secure Code.

Microsoft Press, Redmond, Washington, second edition,

2003.

[19] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web

Application Security Assessment by Fault Injection and

Behavior Monitoring. In Proceedings of the 11th

International World Wide Web Conference (WWW 03),

May 2003.

[20] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and

S. Y. Kuo. Securing Web Application Code by Static

Analysis and Runtime Protection. In Proceedings of the

12th International World Wide Web Conference (WWW

04), May 2004.

[21] S. Labs. SQL Injection. White paper, SPI Dynamics,

Inc., 2002. http://www.spidynamics.com/assets/documents/

WhitepaperSQLInjection.pdf.

[22] D. Litchfield. Web Application Disassembly with

ODBC Error Messages. Technical document, @Stake, Inc.,

2002. http://www.nextgenss.com/papers/webappdis.doc.

[23] V. B. Livshits and M. S. Lam. Finding Security Errors

in Java Programs with Static Analysis. In Proceedings of

the 14th Usenix Security Symposium, pages 271–286, Aug.

2005.

[24] C. A. Mackay. SQL Injection Attacks and Some Tips

on How to Prevent Them. Technical report, The Code

Project, January 2005.

http://www.codeproject.com/cs/database/

SqlInjectionAttacks.asp.

[25] O. Maor and A. Shulman. SQL Injection Signatures

Evasion. White paper, Imperva, April 2004.

http://www.imperva.com/ application defense center/white

papers/ sql injection signatures evasion.html.

[26] M. Martin, B. Livshits, and M. S. Lam. Finding

Application Errors and Security Flaws Using PQL: A

Program Query Language. In Proceedings of the 20th

annual ACM SIGPLAN conference on Object oriented

programming systems languages and applications

(OOPSLA 2005), pages 365–383, 2005.

[27] R. McClure and I. Kr¨uger. SQL DOM: Compile Time

Checking of Dynamic SQL Statements. In Proceedings of

the 27th International Conference on Software Engineering

(ICSE 05), pages 88–96, 2005.

[28] S. McDonald. SQL Injection: Modes of attack,

defense, and why it matters. White paper,

GovernmentSecurity.org, April 2002.

http://www.governmentsecurity.org/articles/

SQLInjectionModesofAttackDefenceandWhyIt

Matters.php.

[29] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based

Approach to the Detection of SQL Attacks. In Proceedings

of the Conference on Detection of Intrusions and Malware

and Vulnerability Assessment (DIMVA), Vienna, Austria,

July 2005.

http://www.spidynamics.com/assets/documents/
http://www.codeproject.com/cs/database/
http://www.imperva.com/
http://www.governmentsecurity.org/articles/

